Search results for "Microstrip device"

showing 2 items of 2 documents

Search for flavor-changing neutral current and lepton-flavor violating decays of D-0 -> l(+)l(-)

2004

We report on a search for the flavor-changing neutral current decays $\Dz\to e^+e^-$ and $\Dz\to\mu^+\mu^-$, and the lepton-flavor violating decay $\Dz\to e^\pm\mu^\mp$. The measurement is based on $122 {fb}^{-1}$ of data collected by the \babar detector at the PEP-II asymmetric $e^+e^-$ collider. No evidence is found for any of the decays. The upper limits on the branching fractions, at the 90 % confidence level, are $1.2\times 10^{-6}$ for $\Dz\to e^+e^-$, $1.3\times 10^{-6}$ for $\Dz\to\mu^+\mu^-$, and $8.1\times 10^{-7}$ for $\Dz\to e^\pm\mu^\mp$.

OptimizationParticle physicsLepton-flavor violating (LFV)Electron–positron annihilationBABARCharged particleGeneral Physics and Astronomy-Standard model (SM)Lambda baryon01 natural sciencesPARTICLE PHYSICS; PEP2; BABARHigh Energy Physics - ExperimentNONuclear physicsSilicon microstrip detector0103 physical sciencesPEP2010306 general physicsDETECTOR; BABAR; SLACDETECTORFlavorProbabilityPhysicsNeutral current010308 nuclear & particles physicsEnergy dissipationFlavor-changing neutral currentColliding beam acceleratorMicrostrip deviceHEPFlavor-changing neutral current (FCNC)Drift chamberPARTICLE PHYSICSHigh Energy Physics::ExperimentParticle detectorSLACLepton
researchProduct

Operational experience with a large detector system using silicon strip detectors with double sided readout

1992

Abstract A large system of silicon strip detectors with double sided readout has been successfully commissioned over the course of the last year at the e + e − collider LEP. The readout of this 73 728 channel system is performed with custom designed VLSI charge sensitive amplifier chips (CAMEX64A). An overall point resolution of 12 μm on both sides has been acheived for the complete system. The most important difficulties during the run were beam losses into the detector, and a chemical agent deposited onto the electronics; however, the damage from these sources was understood and brought under control. This and other results of the 1991 data-taking run are described with special emphasis o…

Nuclear and High Energy PhysicsSiliconPhysics::Instrumentation and Detectorschemistry.chemical_element01 natural scienceslaw.inventionlaw0103 physical sciencesVLSI circuit[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ElectronicsDetectors and Experimental Techniques010306 general physicsColliderInstrumentationPhysicsVery-large-scale integration010308 nuclear & particles physicsbusiness.industryDetectorEmphasis (telecommunications)Colliding beam acceleratorMicrostrip deviceAmplifiers (electronic)Semiconducting siliconchemistryOptoelectronicsLEP storage ringbusinessBeam (structure)Radiation detectorCommunication channelNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct